

Introduction

- ⇒ river regulation detains glass eels from their upstream migration ⇒ about 55,000 migration obstacles (dams, weirs) exist in Germany (Anonymous 2008)
- ⇒ re-stocking is essential

Pilot project on eel stock enhancement in the Federal State of Brandenburg

Objective	Increase silver eel escapement and sustain eel fishery
Re-stocking volume	35 Mill. glass- & farm sourced eel (2006 – 2013)
Re-stocking value	>7 Mill. € (2006 – 2013)
Funding	50% EFF, 25% federal funds, 25% fishermen/angler

Recruitment - re-stocking

- official re-stocking statistics
- samples at re-stocking events since 2006

eel (Simon et al. 2013, Simon & Dörner 2014): Study to comparing growth and survival of glass and farm sourced

- 7 isolated lakes
- lakes were consecutively re-stocked with marked cohorts
- monitoring with fyke nets and electro fishing for 7 years

Natural mortality

Comparison of estimates of

cumulated mortality percentage from Bevacqua et al. (2011) for the Havel River system Comparison of estimates of cumulated mortality of re-stocked eels and calculated

Comparison based on mean eel growth and a mean water temperature of 11.7°C

Based on:

- bird counts
- average time spent in the study area
- daily feed consumption
- proportion of eels in the cormorant forage (Brämick & Fladung 2006)

Mortality by commercial fishery

- 89 mixed species commercial fishing companies
- species-specific catch statistics

Mortality by recreational fishery

- ≈ 90,000 recreational fishery license holders
- logbook survey for eel catches (Fladung et al. 2012)
- return rate of the logbooks: 48%

Mortality by hydropower stations

- Hydropower station 30 % (ICES 2003)
 Pumping station 0.5 % (Rauck 1980)

The German Eel Model (GEM)

Version 3 of the German Eel Model

Modeling results

Stock losses

Silver eel escapement

Real silver eel escapement

Marking with Visible Implant Elastomer tags (VIE)

- Monitoring station close to the outlet
- Special fyke net with wings spanning about half of the total river width
- Capture-mark-recapture study

Silver eel escapement

Silver eel escapement

mortality factors could be stopped completely.

Scenario tool of the German Eel Model

Modelled effects of management measures in the Havel River system

el escar + 72 %		Cormorant ↓ 50 % + 7 %	Fishery \$\psi 50 % (re-stocking constant) \$\psi 50 %	Fishery (re-stocking 10 %)	Eel re-stocking	Measure Action Result by silver eel escapement
--------------------	--	------------------------	--	----------------------------	-----------------	--

Why stocking?

Biology:

- panmictic species (one large stock) (Als et al. 2011)
- re-stocked eels show no differences in upgrowth (e.g. Pawson 2013, Westerberg 2013, Westerberg et al. 2014)
- sex development & survival is density depended (e.g. ICES 2007, Feunteun et al. 2009)
- faster growth & earlier puberty in costal waters (e.g. Simon et al. 2014)

Reasons for stocking inland water bodies:

- compensate for habitat losses & sustain the common distribution area
- increase of silver eel escapement & reach the target of the eel regulation (e.g. Brämick et al. 2016)
- maybe decrease mortality in the origin waters
- produce higher ratios of females and older & larger females (e.g. Moriarty 2009)
- extension of generation time (survival strategy)
- sustain eel fishery, eel consumption and civil engagement

Thank you for your attention!

For more details of our study please read here...

Marine Science

ICES Journal of Marine Science (2016), 73(1), 91-100. doi:10.1093/icesjms/fsv113

Contribution to the Symposium: 'International Eel Symposium 2014'

Original Article

Stocking is essential to meet the silver eel escapement target in a river system with currently low natural recruitment

Uwe Brämick*, Erik Fladung, and Janek Simon

Institute of Inland Fisheries e.V. Potsdam-Sacrow, Im Königswald 2, 14469 Potsdam, Germany

*Corresponding author: tel: +49 33201 40630; fax: +49 33201 40640; e-mail: uwe.braemick@ifb-potsdam.de

Brämick, U., Fladung, E., and Simon, J. Stocking is essential to meet the silver eel escapement target in a river system with currently low natural recruitment. - ICES Journal of Marine Science, 73: 91-100

Food (BLE), grant number 2807HS036 Brandenburg (grant number Az16-1222-09/22) and the German Federal Ministry of Food, Financial support was provided by the FIAF/EFF-programme of the EU, the Federal State of Agriculture and Consumer Protection (BMELV) through the Federal Office for Agriculture and