

Environmental DNA (eDNA) as a survey tool for *Anguilla anguilla*

Dr Stephanie Sargeant

Stephanie.sargeant@uwe.ac.uk

Laura Weldon, Dr Mark Steer, Dr Heather Macdonald, Dr Lyn Newton,

What is eDNA?

Nuclear or mitochondrial DNA released from an organism into their environment

- Captured from environmental substrates e.g. water, soil, invertebrates, air or vegetation,
- Can include secreted faeces, mucus, gametes, shed skin, hair, scales and carcasses

What is eDNA?

- Taken off over the last 5/10 yrs
- Cost of molecular methods falling over last 20 yrs (Nature, 2014)
- Quick, low cost, non-invasive survey method

Figure - schematic advantage of the higher detection probability with the eDNA method compared to traditional methods (drawn after Darling & Mahon, 2011) **Great crested newts** Natural England approved 2013

Detection efficiency:	
eDNA	99%
Bottle trapping	76%
Torch surveys	74%
Egg searches	44%

Biggs et al., 2014

What's the potential?

Presence/absence

Distribution, range

Habitat preferences

Barriers to migration

Quantification, relative population abundance

Sex, life stage...

eDNA approaches

How does it work?

How does it work?

Target amplification

Total DNA extracted

Quantitative PCR

Species specific primers & hydrolisis probe

Mitochondrial genome

Targets cytochrome *b* gene

80-150bp

Organism Presence / absence

eDNA advantages

- Non-invasive
- Time & cost effective
- Simple to collect (citizen science opportunities)
- Any time of the day
- Sample from remote, hard to reach areas
- Higher detection probabilities when compared to traditional methods – illusive or rare species, IAS, diseases
- Increased taxonomic resolution
- High sensitivity

eDNA limitations

- High sensitivity contamination
- False negatives
- Sample storage
- Quantification
- Sex, life stages, population structure
- Detection probabilities differ with species and habitat type

Research overview:

Lab development & optimisation

Aquarium testing & optimisation

Initial field trials

Field sampling & method validation
1) Irish Loughs
2) Somerset levels
3) Corfu, Greece

Bristo

Aims:

- Can *A. anguilla* be detected in lakes?
- How does this method compare to fyke netting?
- Does eDNA recovery reflect eel populations suggested by the high, medium and low fyke net data.

- Total of 83 water samples
- qPCR 6 replicates/sample

eDNA method captures and identifies A. anguilla DNA

eDNA recovery reflects relative population numbers

No significant difference in eDNA recovery from shore vs. mid-lake samples

Somerset

- Avalon Marshes, Somerset
- 3 freshwater ponds: Westhay Moor Westhay Heath Catcott

Aims:

- Explore method function in smaller water bodies
- Fine scale habitat mapping
- Depth sampling

Somerset

Westhay Moor

Westhay Heath

Outcome of 6 qPCR replicates:

Negative Positive

Catcott

Preliminary findings: indicate habitat use and depth variation – more work to be done!

Summary

Effective non-invasive method for detection of *A. anguilla* from water samples

eDNA recovery reflects known relative populations

High sensitivity

Works well independently or in combination with traditional methods

eDNA: future potential

Lots of potential!

- Pre-survey tool
- Inform future monitoring plans
- Potential to be used for citizen science projects
- Can be used to answer more ecological questions

e.g. habitat use, barriers to migration

- Other species
- Particularly useful for rare, elusive, invasive species or pathogens

Professor Katsumi Tsukamoto, Nihon University, Japan

Thank you for listening

stephanie.sargeant@uwe.ac.uk

Acknowledgements

Laura Weldon, Dr Mark Steer, Dr Heather Macdonald, Dr Lyn Newton

Iascach Intíre Éireann Inland Fisheries Ireland

